Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes.

نویسندگان

  • Nic Irvin
  • Mark S Hoddle
  • David A O'Brochta
  • Bryan Carey
  • Peter W Atkinson
چکیده

The development of transgenic mosquitoes that are refractory to the transmission of human diseases such as malaria, dengue, and yellow fever has received much interest due to the ability to transform a number of vector mosquito species with transposable elements. Transgenic strains of mosquitoes have been generated with molecular techniques that exhibit a reduced capacity to transmit pathogens. These advancements have led to questions regarding the fitness of transgenic mosquitoes and the ability of transformed mosquitoes to compete and effectively spread beneficial genes through nontransformed field populations, the core requirement of a genetically based control strategy aimed at reducing the spread of mosquito-borne human disease. Here we examine the impact of transgenesis on the fitness of Aedes aegypti, a mosquito that transmits yellow fever. Mosquitoes were altered with two types of transgene, the enhanced GFP gene and two transposase genes from the Hermes and MOS1 transposable elements. We examined the effects of these elements on the survivorship, longevity, fecundity, sex ratio, and sterility of transformed mosquitoes and compared results to the nontransformed laboratory strain. We show that demographic parameters are significantly diminished in transgenic mosquitoes relative to the untransformed laboratory strain. Reduced fitness in transgenic mosquitoes has important implications for the development and utilization of this technology for control programs based on manipulative molecular modification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Post-integration stability of piggyBac in Aedes aegypti.

The post-integration activity of piggyBac transposable element gene vectors in Aedes aegypti mosquitoes was tested under a variety of conditions. The embryos from five independent transgenic lines of Ae. aegypti, each with a single integrated non-autonomous piggyBac transposable element gene vector, were injected with plasmids containing the piggyBac transposase open-reading frame under the reg...

متن کامل

Purified mariner (Mos1) transposase catalyzes the integration of marked elements into the germ-line of the yellow fever mosquito, Aedes aegypti.

Derivatives of the mariner transposable element, Mos1, from Drosophila mauritiana, can integrate into the germ-line of the yellow fever mosquito, Aedes aegypti. Previously, the transposase required to mobilize Mos1 was provided in trans by a helper plasmid expressing the enzyme under the control of the D. psuedoobscura heat-shock protein 82 promoter. Here we tested whether purified recombinant ...

متن کامل

Fitness Impact and Stability of a Transgene Conferring Resistance to Dengue-2 Virus following Introgression into a Genetically Diverse Aedes aegypti Strain

In 2006, we reported a mariner (Mos1)-transformed Aedes aegypti line, Carb77, which was highly resistant to dengue-2 virus (DENV2). Carb77 mosquitoes expressed a DENV2-specific inverted-repeat (IR) RNA in midgut epithelial cells after ingesting an infectious bloodmeal. The IR-RNA formed double-stranded DENV2-derived RNA, initiating an intracellular antiviral RNA interference (RNAi) response. Ho...

متن کامل

Post-Integration Silencing of piggyBac Transposable Elements in Aedes aegypti

The piggyBac transposon, originating in the genome of the Lepidoptera Trichoplusia ni, has a broad host range, making it useful for the development of a number of transposon-based functional genomic technologies including gene vectors, enhancer-, gene- and protein-traps. While capable of being used as a vector for the creation of transgenic insects and insect cell lines, piggyBac has very limit...

متن کامل

Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae).

A Hermes-based transposable element transformation system incorporating an enhanced green fluorescent protein (EGFP) marker was used to produce two transgenic lines of Culex quinquefasciatus (Say). The transformation frequency was approximately 12% and transformation of Culex was shown to be dependent on the presence of Hermes transposase. Injected Culex embryos were treated with four different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 3  شماره 

صفحات  -

تاریخ انتشار 2004